

Occupant and Vehicular Responses to Low Speed Collisions

Team 2

Presenters: William Smith, Dylan Tinsley, and Caroline Walker

Caroline Walker

Team Introductions

Caroline Walker Team Leader

Dylan Tinsley Financial Advisor

Jacob Dunne Instrumentation Engineer

William Smith Design Engineer

Orion Yeung Modeling Engineer

Caroline Walker

Introduction to the Sponsor

Cummings Scientific, LLC.

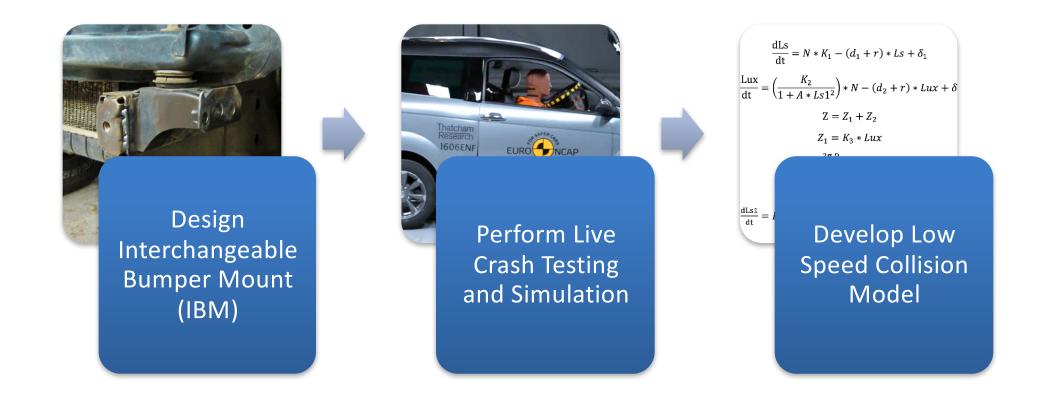
- Forensic engineering consulting firm
 - Accident reconstruction, biomechanics, human factors, simulation (Cummings Scientific, LLC, 2017)
- Expert witnesses for litigation purposes
- Located in Tallahassee, FL and Atlanta, GA

Caroline Walker

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Dylan Tinsley PROJECT BACKGROUND

4


Motivation

Currently:

- Cummings Scientific takes hundreds of cases each year where claims of catastrophic injury come from low speed collisions.
- Low speed collision models are extrapolated from high speed data (20-40 mph).
- Vehicles are not reused for live crash testing purposes.
 - High speed crash tests result in significant structural damage.

Project Scope

*Low speed crash: delta-v less than 7.5 mph (Wang & Gabler, 2007)

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

MAthematical DYnamic MOdels (MADYMO)

- MADYMO is a tool for analyzing dynamic systems
 - Multi-body, Computational Fluid Dynamics, Finite Element Analysis (Tass International, 2017)
- Occupant response analysis
 - Dummy and human models
- Structural deformation analysis
 - (TASS International, 2017)

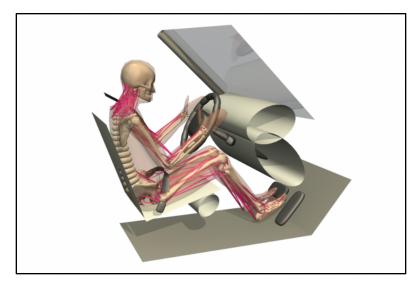


Figure 1. An example model in the MADYMO software suite (TASS International, 2017)

Overview of Project Status

Tasks Completed in the Fall:

- Defined project scope
- Created functions and targets for IBM and models
- Generated design concepts for the IBM
- Selected initial design concept for the IBM

Figure 2. An acquired test bumper

Spring Tasks:

- Finalized detailed design through impact calculations
- Ordered parts for IBM
- Order sensors and instrumentation for live crash testing
- Fabrication of IBM
- Perform live crash testing
- Data processing
- Generate occupant and vehicle models

William Smith **DETAILED DESIGN**

Design Review

> Targets

- 15 Crash Tests
- 3 Bumper Styles
 - Foam core
 - Piston isolator
 - Steel

- Test Vehicle: 1999 Mazda B3000
 - Frame yield strength of 36ksi
- 4 mph ΔV of crash vehicle

Figure 3. Mazda B3000 test vehicle

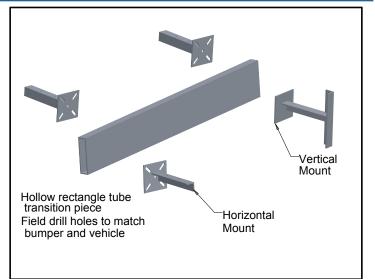
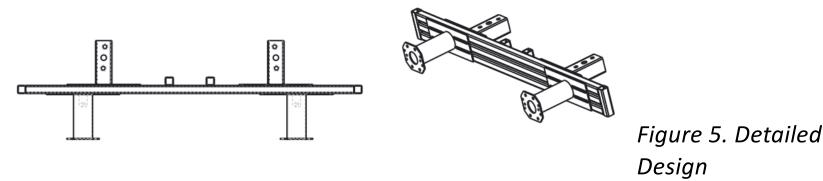
William Smith

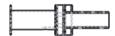
Design Review

- Concept Generation
 - Initial Phase
 - System and sub system concepts
 - Group and individual ideation
 - Evaluation Phase
 - Analyzed against targets/functions
 - Final Phase
 - Created new, more detailed versions of high scoring concepts
 - Reevaluated new designs

William Smith

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

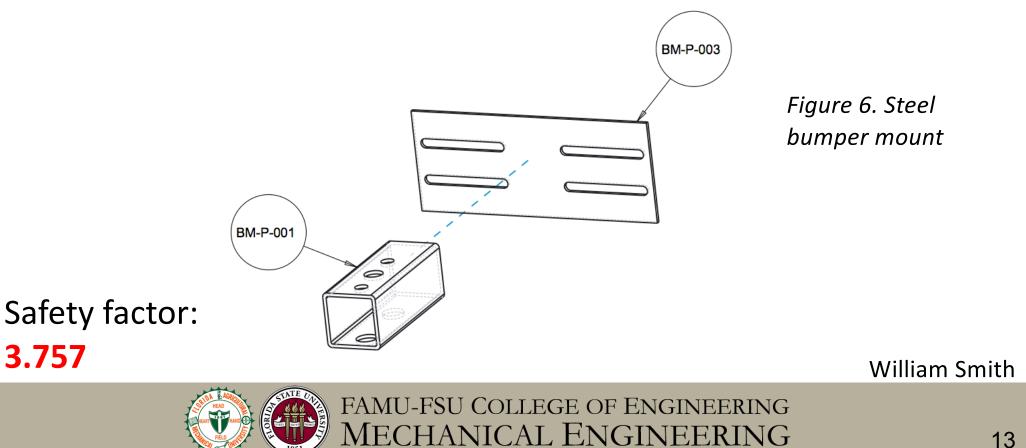




Figure 4. Conceptual Design

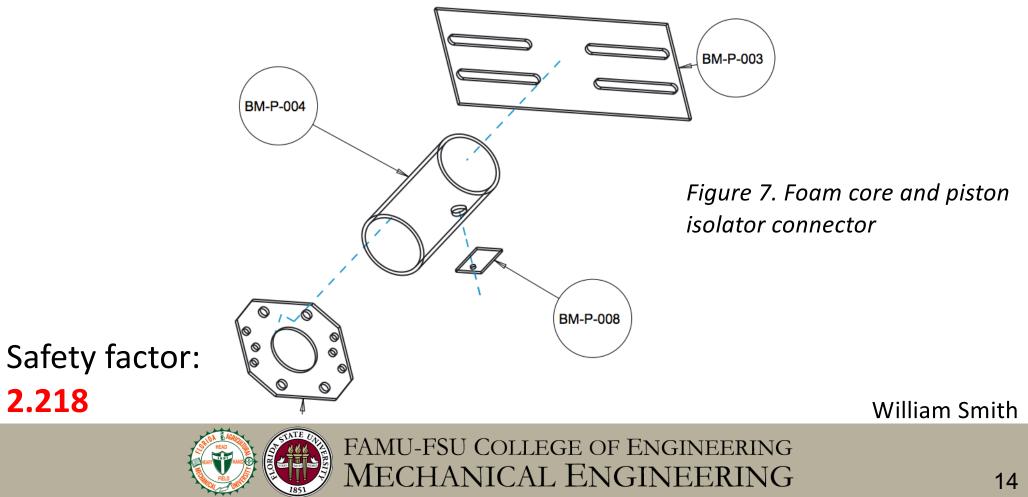
Design Overview

- Modular design for adapting to different bumpers and test vehicles
 - No field modification apart from bolting together
 - Calculations were performed using impact factor of 2

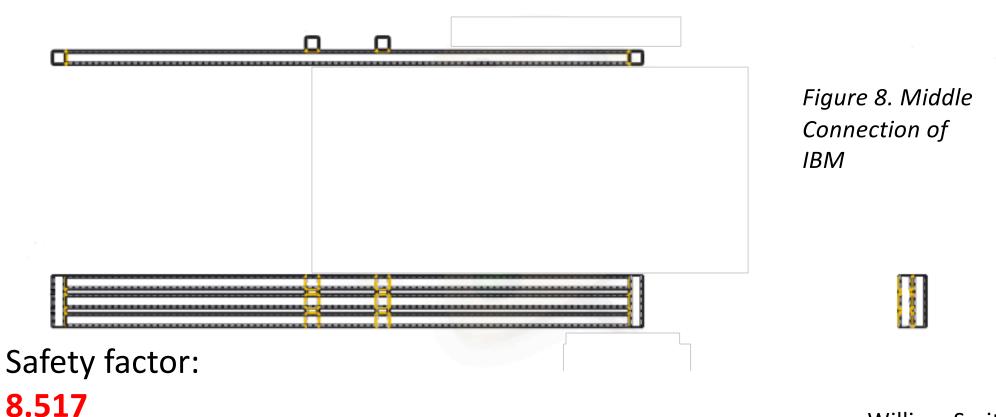
Overall design safety factor:


2.218

William Smith


Horizontal Connection

- > Allows mounting to test truck and steel bumper
 - Enlarged bottom holes to allow access to bolt with socket


Vertical and Insert Connection

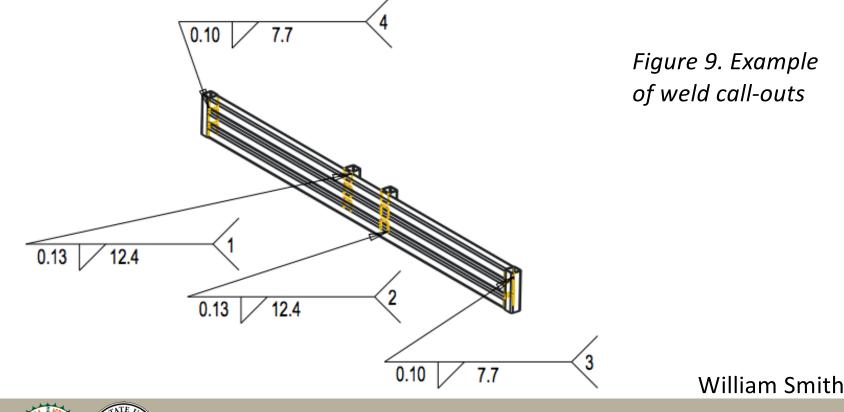
- Allows mounting to foam core and piston isolator
 - Symmetrical plate to for both sides of bumper
 - Hollow tube for piston isolator insertion

Middle Connecting Piece

- Slotted to allow width adjustment
 - Wide enough for full size truck

FAMU-FSU COLLEGE OF ENGINEERING

ECHANICAL ENGINEERING


William Smith

15

Fabrication

Going through FSU machine shop

- All components are carbon steel
- All connections are filet welded

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

BUDGET UPDATE

Budget Update

Current expenditures:

- IBM raw materials
- Sensor testing

Future expenditures:

- IBM fabrication (potentially)
- Sensors and instrumentation
 - Tri-axial accelerometers
 - High-speed cameras

Sensors and Instrumentation 3% **Raw Materials** 20% Remaining **Funds** 77%

Figure 10. Representation of Team 2 budget

Dylan Tinsley

Budget Update

Table 1: Team 2 Purchases

Part Name	Qty.	Unit Amount	Total Amount	Vendor	Purchase Date
Bolts	2	\$7.70	\$15.40	Grainger	2/5/18
Nut	1	\$8.05	\$8.05	Grainger	2/5/18
Nut	1	\$5.85	\$5.85	Grainger	2/5/18
Square Tube	1	\$100.18	\$100.18	Grainger	2/5/18
Square Tube	3	\$30.60	\$91.80	Grainger	2/5/18
Steel Plate	2	\$63.59	\$127.18	Grainger	2/5/18
Circular Tube	1	\$60.06	\$60.06	Disc. Steel	2/5/18
Acceleromter	1	\$15.00	\$15.00	Digi-Key	2/12/18
Teensy 3.2	1	\$24.94	\$24.94	Digi-Key	2/12/18
LGA Breakout Board	2	\$6.29	\$12.58	Digi-Key	2/12/18

Total spent: \$461.04

Remaining Total: \$1,538.96

IBM Materials

Sensors

19

Caroline Walker **FUTURE WORK**

Project Schedule

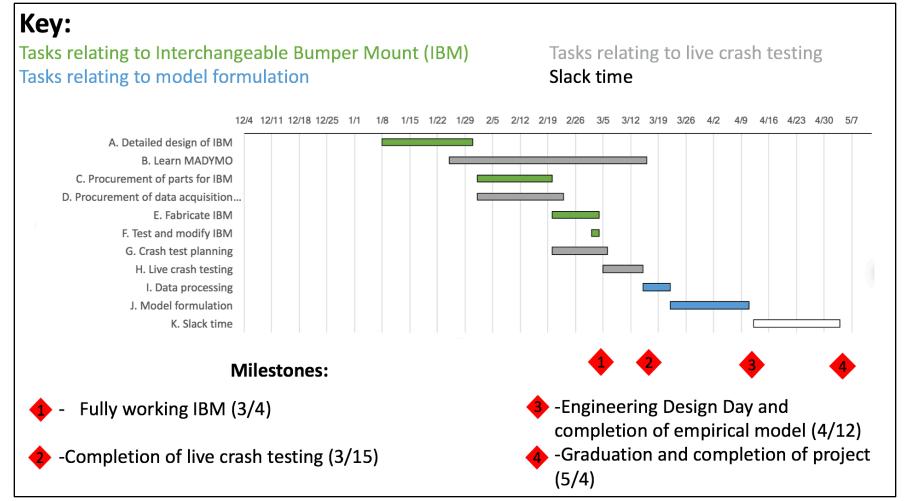


Figure 11. Spring Semester Schedule

Caroline Walker

Sensors and Instrumentation

- Current status: Components ordered for initial testing
 - Teensy 3.2 Microcontroller
 - Tri-axial accelerometer (max acceleration 32g)

Future work:

- Establish communication with accelerometer
- Purchase remaining accelerometers and mount to IBM

Figure 12. KX224-1053-SR tri-axial, surface mount accelerometer Caroline Walker

Live Crash Testing

Current status:

- Will occur after fabrication of IBM
- Planning for tests has begun

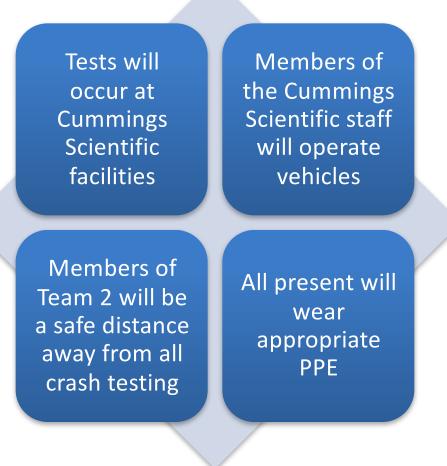


Figure 13. Important Test Information

Caroline Walker

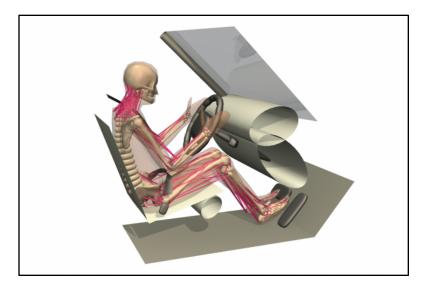
Model Generation

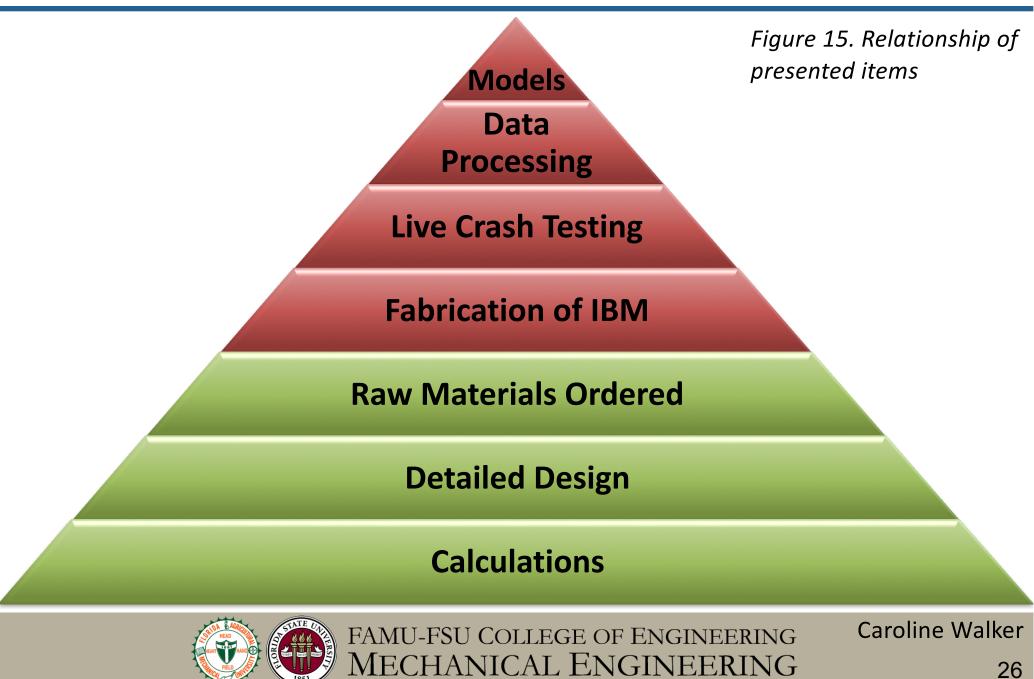
Current Status:

- Background research on current models
- Initial session to get acquainted with MADYMO

Future work:

- Test data will be processed in MADYMO
 - Built-in filters
- Finished product will be a MADYMO model




Figure 14. An example model in the MADYMO software suite (Tass International, 2017)

Caroline Walker

Caroline Walker

Conclusion

References

- Cars.com(2017). 2002 Mazda B3000 DS 4x2 Regular Cab 111.6 in. WB. Retrieved from <u>https://www.cars.com/research/mazda-b3000-2002/specs/</u>
- Clker.com(2018). Car Accident Clip Art [Online Image]. Retrieved from <u>http://www.clker.com/clipart-car-accident-2.html</u>
- Cummings Scientific, LLC(2017). Received from http://cummingssci.com/index.php
- Digi-Key Electronics (2018). [Online Image]. Retrieved from https://www.digikey.com/product-detail/en/kionix-inc/KX224-1053-SR/1191-1048-ND/6679834
- Tass International (2017). MADYMO Retrieved from <u>https://www.tassinternational.com/madymo</u>
- Tass International (2017). [Online Image].Retrieved from <u>https://www.tassinternational.com/madymo</u>
- Wang, Q.,& Gabler, H.C. (2007). Accuracy of Vehicle Frontal Stiffness Estimates for Crash Reconstruction. Retrieved from <u>http://www.sbes.vt.edu/gabler/publications/esv-07-0513-0.pdf</u>

QUESTIONS

ADDITIONAL SLIDES

Specifications for Accelerometer

Documents & Media	
Datasheets	<u>KX224-1053</u>
Product Training Modules	Thin Accelerometers
Design Resources	Sensor Selector Industrial Automation Product Selector
Online Catalog	<u>KX224</u>

Product Attributes	Select All	
Categories	Sensors, Transducers	0
	Motion Sensors - Accelerometers	0
Manufacturer	Kionix Inc.	
Series	-	
Packaging 🕜	Cut Strip	
Part Status	Active	
Туре	Digital	
Axis	X, Y, Z	
Acceleration Range	±8g, 16g, 32g	
Sensitivity (LSB/g)	4096 (±2g) ~ 1024 (±8g)	
Sensitivity (mV/g)	-	
Bandwidth	800Hz	
Output Type	I²C, SPI	
Voltage - Supply	1.71 V ~ 3.6 V	
Features	Selectable Scale	
Operating Temperature	-40°C ~ 85°C (TA)	
Mounting Type	Surface Mount	
Package / Case	16-LGA	
Supplier Device Package	16-LGA (3x3)	
Report an Error	1.583 Remaining	Search

1,583 Remaining

Retrieved from:https://www.digikey.com/product-detail/en/kionix-inc/KX224-1053-SR/1191-1048-

ND/6679834

Specifications for Microcontroller

Documents & Media	
Datasheets	2756 Kinetics Peripheral Module QR K20_LH/MP5 Datasheet K20 Sub-Family Reference Manual
Design Resources	2756 Schematic
Online Catalog	Teensy 3.2 + Header Development Board

Product Attributes	Select All	
Categories	Development Boards, Kits, Programmers	\bigcirc
	Evaluation Boards - Embedded - MCU, DSP	•
Manufacturer	Adafruit Industries LLC	
Series	Kinetis	
Part Status	Active	
Board Type	Evaluation Platform	
Туре	MCU 32-Bit	
Core Processor	ARM® Cortex®-M4	
Operating System	-	
Platform	Teensy 3.2	
For Use With/Related Products	K20	
Mounting Type	Fixed	
Contents	Board(s), Accessories	
Report an Error	3,684 Remaining	Search

Retrieved from: <u>https://www.digikey.com/product-detail/en/adafruit-industries-llc/2756/1528-2385-ND/6827117</u>

Selection Criteria	Weights	Square Tube	Round Tube	Round Tube with Fins
Impact Strength	3		1	1
Fatigue Strength	3		0	0
Mounting accelerometers	3		-1	-1
Ease of manufacture	2		0	-1
Weight	2	Datum	1	-1
Ability to accommodate multiple types	3	Dat	0	0
Field modification	1		0	0
Buckling strength	3		1	1
Aesthetic Value	1		0	1
Score	-	0	5	0

Decision Matrix for Piston Isolator/Foam Core Connector

Selection Criteria	Weights	Angle Bracket	Square Tube
Impact Strength	3		1
Fatigue Strength	3		1
Mounting accelerometers	3		-1
Ease of manufacture	2	c	-1
Weight	2	Datum	-1
Ability to accommodate multiple types	3		0
Field modification	1		0
Buckling strength	3		1
Aesthetic Value	1		1
Score	-	0	3

Decision Matrix for Solid Frame Mount

Selection Criteria	Weights	Rectangular Tube	Honeycomb	Plate	Sheet	Square Tubes
Impact Strength	3		1	1	1	1
Fatigue Strength	3		1	1	-1	1
Mounting Accelerometers	3		-1	-1	0	-1
Ease of Manufacture	2		-1	0	0	-1
Weight	2	Datum	-1	-1	1	-1
Ability to Accommodate Multiple Types	3	Dat	0	0	0	0
Field Modification	1		0	-1	0	1
Buckling Strength	3		1	1	-1	1
Aesthetic Value	1		1	0	0	1
Score	-	0	3	3	-1	4

Initial Decision Matrix for Center Connection

Selection Criteria	Weights	Plate	Honeycomb	Square Tube
Impact Strength	3		-1	-1
Fatigue Strength	3		-1	-1
Mounting Accelerometers	3		1	2
Ease of Manufacture	2	F	-3	-1
Weight	2	Datum	1	2
Ability to Accommodate Multiple Types	3	Dai	0	0
Field Modification	1		1	3
Buckling Strength	3		-1	0
Aesthetic Value	1		3	1
Score	-	0	-6	6

Final Decision Matrix for Center Connection

Safety Factor Table

The actual material used was testedMaterial-property dataRepresentative material test data are availableavailable from testsFairly representative material test data are available	F1 1.3 2
Material-property data Representative material test data are available	2
trance in the second se	3
Poorly representative material test data are available	e 5+
	<u>F2</u>
Are identical to material test conditions	1.3
Environmental conditions Essentially room-ambient environment	2
in which it will be used Moderately challenging environment	3
	5+
Automatine Engineers (S.A.C.) angur www.sac.edg	<u>F3</u>
· · · · · · · · · · · · · · · · · · ·	1.3
Models have been tested against experiments	
Models have been tested against experiments Models accurately represent system	2
Analytical models for Models accurately represent system loading and stress Models approximately represent system	2 3
which it will be used Moderately challenging environment Extremely challenging environment	5+ <u>F3</u>

Safety Factor Table from Design of Machinery (R.L Norton)

